

Di-Plast Matrix Data Extractor

 Di-Plast Matrix Data Extractor (MDE) is a web-based application, which can be

deployed on personal computer. It identifies document table regions on PDF

documents using Computer Vision based Deep Learning, especially Transfer

Learning and Object Detection algorithm. Then it extracts all textual data into

text files by applying Optical Character Recognition (OCR) and also extracts

tabular data separately in excel files using Camelot python package. It supports

to transfer manufacturer names and corresponding technical datasheets

names (or PDF filenames) to MongoDB database table for further processing.

 The code can be downloaded from GitHub (https://github.com/cslab-
hub/MatrixDataExtractor). Only open-source software or library are used in
this application. MDE is primarily divided into 2 sections-

1. Table Detection: It provides code to train and test deep learning object
detection model for document table detection task. The model is built
mainly on PyTorch Detectron2 library. The official support of Detectron2
library is available only on Linux OS (operating system). Linux Desktop
version is recommended for normal users. Advanced users can use Linux
Server version according to their choice.

2. Backend: It is the code of Django based web application, which provides
a basic user interface to access the application functionalities for normal
users.

 First, build table detection model weight (model_final.pth). Next, incorporate

the model weight along with corresponding model description XML file

https://github.com/cslab-hub/MatrixDataExtractor
https://github.com/cslab-hub/MatrixDataExtractor

(faster_rcnn_R_101_FPN_3x_config.yaml or uos_dip_config.yaml) within

Django application. The pre-requisite of MDE is given below-

1. For normal users, it is recommended to use Linux Desktop version (which

comes with nice user interface), e.g. Ubuntu OS. The user interface is

recommended for normal users

• to create Manufacturer sub-folders

• to store Technical datasheets (or PDF files) within Manufacturer

sub-folders

• check the model inference results, if table detection model

correctly identifies document table regions on unseen document

images or not.

 Advanced users can use Linux Server version.

2. Please remember the difference between two terms-

Document image: Each PDF page converted into image format.

Document Table Image: Each document table on each document image.

3. Please check README file at GitHub page for installation. Install

MongoDB and Elastic Search on Linux along with Anaconda environment

and other libraries. An interface of MongoDB database (e.g. MongoDB

Compass) is recommended to access data from MongoDB. Elastic Search

can be useful to search results based on textual query, which could be

incorporated through future code development.

4. To train and test deep learning model, GPU enabled computer is

recommended. Install PyTorch 1.8.0 GPU version and relevant

Detectron2 library for Table Detection section. For Backend section, you

can use PyTorch 1.8.0 CPU version and relevant Detectron2 library.

 The primary code structure is shown below-

Fig. Primary code structure

Backend - Web Application

Installation:

Please check README file at GitHub page for installation. Optionally you can
install MongoDB Compass tool.

Folder Structure Overview:

Normal users need to access MatrixDataExtractor/backend/util folder. Folder

/util/prop contains MDE.xml file, which is used for Django application

configuration management. Folder /util/data/tabledet/modelweight contains

• Faster R-CNN based object detection model description file:

faster_rcnn_R_101_FPN_3x_config.yaml or uos_dip_config.yaml

• Table detection model weight: model_final.pth, which is built after table

detection model training.

The MatrixDataExtractor/backend/util folder structure is shown below-

Fig. Utility folder structure overview

Pre-requisite for MDE web Application :

1. Make sure /util/prop folder contains MDE.xml file, which is used for
MDE web application configuration.

2. Folder /util/data/tabledet/modelweight contains

• Model description file: faster_rcnn_R_101_FPN_3x_config.yaml or
uos_dip_config.yaml

• Model weight file: model_final.pth

These files are taken after Deep Learning Table Detection model training.
Please refer Model Training sub-section of Table Detection section for more
details.

Run web application:

1. Make sure MongoDB and Elastic Search services are installed on your
Linux OS. You will find start.sh (shell) file in
MatrixDataExtractor/backend folder. Execute the shell file with below
command-

$ bash -i start.sh

2. The web application starts on Anaconda environment env_mde by

running the shell file. You can browse the web application by accessing
localhost:8000 url on your personal computer. If you want, you can give
your preferred URL name at ALLOWED_HOSTS of
MatrixDataExtractor/backend/backend folder’s setting.py file.

User guide of MDE web application:

1. When the web application is running, you can see homepage as
Home link (at left panel) along with other link descriptions. Several
instructions are mentioned on webpage for simplicity.

2. Create sub-folders with Manufacturer names under /util/data/srcpdf
folder (s.g. BASF, Bayer, LyondellBasell). Keep corresponding PDF files
within each folder. The sub-folders are created under
/util/data/srcpdf folder as below-

The PDF files are kept within each sub-folder (e.g. LyondellBasell sub-
folder) as below-

3. Go to Synchronize Datasheet link and click on Synchronize
Datasheets button. It will synchronize all PDF files and corresponding
sub-folders under /util/data/srcpdf folder. It synchronizes

manufacturer names and corresponding PDF filenames in
matrixtextapp_datasheet table in MongoDB database.

4. You can check manufacturer names and corresponding PDF filenames
in matrixtextapp_datasheet table in MongoDB database. You can
use MongoDB Compass tool to access the data.

5. Go to Datasheet Information Extraction link to verify manufacturer
names and corresponding technical datasheet names (or PDF
filenames) available in dropdown menu. Select Manufacturer name
first to access PDF files.

6. Upon selection of Manufacturer name, you can get corresponding
Technical datasheet names (or PDF filenames) in dropdown menu.

7. Then select Technical Datasheet name (or PDF file) for further
processing.

8. You can extract data from PDF files into textual format by clicking on
Extract Data button. Data will be stored under
/util/data/extractedinfo/textualdata folder. You will get successful
response (in white color) on webpage, if you have extracted data
from PDF files as below-

9. Please look above carefully that a sample notification is shown on
web page after extracting 1 PDF document (e.g., Circulen 2420D
Plus.pdf from LyondellBasell sub-folder is extracted) and stored PDF
information in a text files.

10. Folder /util/data/extractedinfo/textualdata contains LyondellBasell
sub-folder, which also contains Circulen 2420D Plus_preprocessed.txt
file as below. This unstructured textual information can be interesting
for Elastic Search, Natural Language Processing (NLP) and Big Data
technologies.

11. Go to Tabular Data Extraction link to click on Extract Tabular Data
button.

12. It identifies table regions of document images in a Rectangular
Boundary Box (BBox) format under
/util/data/tabledet/inference/inferimg folder and stores BBox pixel
information of document images in CSV files.

13. Simultaneously, you will also extract only document table images
(cropped rectangular BBox region from document images) under
/util/data/tabledet/inference/infertableimg folder and corresponding
tabular data in excel files.

14. After clicking Extract Tabular Data button, you get successful
response (in white color) on webpage. Now you access document
images and document table images both along with tabular data in
excel files.

15. Above functionality involves deep learning model inference to
identify table regions in rectangular BBox format and cropped that
regions to save table images. Folder
/util/data/tabledet/inference/inferimg contains-

• Manufacturer sub-folder

• Technical Datasheet sub-folder

• Document images along with BBox inference information in CSV
file as below-

16. The document image pixels to PDF co-ordinates mapping is
performed (https://www.pdfscripting.com/public/PDF-Page-
Coordinates.cfm) to identify table regions on each PDF pages by
considering DPI (dot per inch) value=72. DPI value is generally used to
map digital images to physical pages (e.g. A4 page).

17. If you change DPI value other than 72, and your technical datasheets
(or PDF files) are not A4 types, then feel free to adapt code changes
to incorporate customized DPI value at
MatrixDataExtractor/backend/matrixtextapp/cv_basic_service.py

18. When image pixel values to PDF co-ordinate values mapping is
performed, Camelot python package is used with parameters
table_areas and flavor='stream' to extract tabular data from PDF files
in excel format.

https://www.pdfscripting.com/public/PDF-Page-Coordinates.cfm
https://www.pdfscripting.com/public/PDF-Page-Coordinates.cfm

19. Folder /util/data/tabledet/inference/infertableimg contains-

• Manufacturer sub-folder

• Technical datasheet sub-folder

• Document table images along with corresponding excel files as
below-

20. Folder /util/data/tempimg contains tabledata and textdata sub-
folders for pre-processing purpose. Please delete all sub-folders and
files within tabledata and textdata sub-folders when you finish your
information extraction task.

Table Detection- Deep Learning Model

Installation:

Please check GitHub page for installation. The Anaconda environment
env_mde needs to be created to train and to evaluate model (preferably in
GPU server).

Folder Structure:

The folder structure is shown below-

Configuration:

1. Download pre-trained TableBank (faster_rcnn_R_101_FPN_3x) model
config file and pre-trained model weight from Layout-Parser GitHub
page (mentioned in catalog.py python file) from below URL-
https://github.com/Layout-Parser/layout-parser/tree/main/src/layoutparser/models/detectron2

2. Save those files in MatrixDataExtractor/tabledetection/model/configs

folder.

https://github.com/Layout-Parser/layout-parser/tree/main/src/layoutparser/models/detectron2

Image Annotation:

1. You can use any Image Annotation tool (e.g. LabelImg) to annotate
Table images for Supervised Learning. If you have store data in PASCAL-
VOC (XML) format, then you can convert XML annotated files into COCO
(JSON) format. Also you need to convert annotated image information
into CSV format for Di-Plast table detection model. The utility functions
are referred in tabledetection/dataprep_util folder.

2. You can store JSON and CSV annotated information in
tabledetection/data/annotations folder.

3. Keep your images and corresponding annotated XML files (PASCAL-VOC)
in tabledetection/data/train, tabledetection/data/val,
tabledetection/data/test folders.

Model Training:

1. In training, Di-Plast Table Detection model configuration file
(faster_rcnn_R_101_FPN_3x_config.yaml or uos_dip_config.yaml) and
model training weight (model_final.pth) are saved in
tabledetection/diplastmodel folder.

2. Run tabledetection/src/train.py script for model training. A shell script
(mde.sh) is provided to train model in Slurm mode.

Important Note:

• You need to save model_final.pth and
faster_rcnn_R_101_FPN_3x_config.yaml or uos_dip_config.yaml files
into /util/data/tabledet/ modelweight folder in MDE web application for
model inference.

Model Evaluation:

• Evaluate model by running tabledetection/src/test.py script. The Jupyter
Notebook (Eval_DiPlast_TableDetection_AP75 .ipynb) is provided to
evaluate the model and to visualize the inferred images.

Optional- Export Model (for C++ Developers):

• TorchScript: Export model by running
tabledetection/src/export_model.py script and saved model in
tabledetection/output folder as model.ts format. This can be used in C++
development to infer Table images.

For more transfer learning based document table detection research work,

please check below research paper-

Chowdhury, Arnab Ghosh, Nils Schut, and Martin Atzmüller. "A Hybrid

Information Extraction Approach using Transfer Learning on Richly-Structured

Documents." LWDA. 2021. (http://ceur-ws.org/Vol-2993/paper-02.pdf)

http://ceur-ws.org/Vol-2993/paper-02.pdf

